Combining unsupervised learning and discrimination for 3D action recognition
نویسندگان
چکیده
Previous work on 3D action recognition has focused on using hand-designed features, either from depth videos or 2D videos. In this work, we present an effective way to combine unsupervised feature learning with discriminative feature mining. Unsupervised feature learning allows us to extract spatio-temporal features from unlabeled video data. With this, we can avoid the cumbersome process of designing feature extraction by hand. We propose an ensemble approach using a discriminative learning algorithm, where each base learner is a discriminative multi-kernel-learning classifier, trained to learn an optimal combination of joint-based features. Our evaluation includes a comparison to state-of-the-art methods on the MSRAction 3D dataset, where our method, abbreviated EnMkl, outperforms earlier methods. Furthermore, we analyze the efficiency of our approach in a 3D action recognition system. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Combining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملLearned versus Hand-Designed Feature Representations for 3d Agglomeration
For image recognition and labeling tasks, recent results suggest that machine learning methods that rely on manually specified feature representations may be outperformed by methods that automatically derive feature representations based on the data. Yet for problems that involve analysis of 3d objects, such as mesh segmentation, shape retrieval, or neuron fragment agglomeration, there remains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 110 شماره
صفحات -
تاریخ انتشار 2015